Archaeoastronomy and Ancient Technologies 2020, 8(1), 47-59
DOI: 10.24411/2310-2144-2020-00006
To the question of the method of calculating the volume of amphoras
Vodolazhskaya, L.N.
Southern Federal University (SFU), Rostov-on-Don, Russian Federation;
e-mails: larisavodol@aaatec.org, larisavodol@gmail.com
Abstract
The article describes the methods for calculating the volume of amphoras used by modern archaeologists, and proposes a new fairly accurate method for calculating the volume of antique sharp-pointed amphoras using the example of narrow-necked light-clay amphoras of the 3rd century AD. option D from Tanais. The method described in the article is based on the mathematical model of amphoras as complex bodies of revolution, and uses the geometric approximation method to create it. Using the developed model, formulas were obtained for calculating the volume of the capacitive part of the amphora and its main segments. The creation of an effective mathematical model for narrow-necked light clay amphoras proves the fundamental possibility of creating similar mathematical models for other types of amphoras, including vessels of large sizes, for example, Pythos. The article gives interpretations of Heron's formulas for "pythoid" and "spheroidal pythos" from the point of view of simple bodies of revolution formed by second-order lines (parabola and ellipse), defines the form of "pythoid" as a truncated paraboloid of revolution, and also concludes that it belongs to Archimedes authorship of "Heron's formulas" for calculating the volume of "pythoid" and "spheroid pythos".
Keywords: amphoras, volume, ellipse, parabola, geometric approximation, Heron, Archimedes, Tanais, narrow-necked light-clay Heraclean amphoras, antiquity
Full Text: Download pdf (Russian)
References
Abrosimov E.N. Standarty emkosti amfor Geraklei Pontijskoj v IV v. do n.eh. [Capacity standards for amphorae of Heraclea Pontius in the 4th century BC]. Antichnyj mir i arkheologiya. [Ancient world and archeology]. Saratov, 1999. Issue. 10.
Archimedes. Sochineniya. [Compositions]. M .: Gos. izd. fiz.-mat. lit. 1962.
Brashinsky I.B. Metodika izucheniya standartov drevnegrecheskoj keramicheskoj tary. [The methodology of studying the standards of ancient Greek ceramic containers]. Sovetskaya arkheologiya. [Soviet archeology], 1976. No. 3.
Brashinsky I.B. Metody issledovaniya antichnoj torgovli (na primere Severnogo Prichernomor'ya). [Methods of research of antique trade (on the example of the Northern Black Sea region)]. L.: Nauka, 1984.
Grace V.R., 1949. Standard pottery containers of the ancient Greek World. Hesperia. Suppl. VIII. p. 175 sq.
Grakov B.I. Tara i khranenie sel'skokhozyajstvennykh produktov v klassicheskoj Gretsii VI - IV vekov do n.eh. [Packaging and storage of agricultural products in classical Greece of the VI - IV centuries BC]. Izvestiya Gosudarstvennoj Akademii material'noj kul'tury. [Proceedings of the State Academy of Material Culture], 1935. Issue 108.
Hultsch F. Metrologicorum scriptorum reliquiae. Lipsiae, 1864, Bd I, S. 202, N 19.
Ilyashenko S.M. TSifrovye dipinti na uzkogorlykh svetloglinyanykh amforakh III v. n.eh. iz Tanaisa. [Digital dipinti on narrow-necked light clay amphoraes of the 3rd century AD from Tanais]. Istoriko-arkheologicheskie issledovaniya v g. Azove i na Nizhnem Donu. [Historical and archaeological research in the city of Azov and the Lower Don]. Azov, 2006. Issue 22.
Katz V.I., Monakhov S.Yu. Amfory ehllinisticheskogo KHersonesa s poseleniya Panskoe-1 v Severo-Zapadnom Krymu. [Amphoras of the Hellenistic Chersonesos from the settlement of Panskoe-1 in the North-Western Crimea]. Antichnyj mir i arkheologiya. [Ancient world and archeology]. Saratov, 1977. Issue 3.
Lang M.A. New Inscription from Thasos: Specifications for a Measure. BCH,1952, vol.76, p.18 sq
Monakhov S.Yu. Eshhe raz o standartakh emkosti amfor ehllinisticheskogo KHersonesa. [Once again about the standards of the capacity of amphoras of the Hellenistic Chersonesus]. Vestnik drevnej istorii. [Bulletin of Ancient History], 1980. No. 4.
Monakhov S.Yu. O nekotorykh osobennostyakh rascheta standartnykh mer emkosti ostrodonnykh amfor. [About some features of the calculation of standard measures of the capacity of ostroponic amphoras]. Antichnyj mir i arkheologiya. [Ancient world and archeology]. Saratov, 1986. Issue 6.
Monakhov S.Yu. Dinamika form i standartov sinopskikh amfor. [The dynamics of forms and standards of Sinope amphora]. Grecheskie amfory. [Greek amphora]. Saratov, 1992.
Monakhov S.Yu., Slonov V.N. K rekonstruktsii antichnoj metodiki rascheta i modelirovaniya drevnegrecheskikh amfor. [On the reconstruction of the ancient methodology for calculating and modeling ancient Greek amphoras]. Vestnik drevnej istorii. [Bulletin of Ancient History, 1992]. No. 2.
Rosenfeld B.A. Apollonij Pergskij. [Apollonius of Perga]. M.: Publishing. Mosk. The center is continuous. mate. Education, 2004.
Van Der Warden B.L. Probuzhdayushhayasya nauka. Matematika Drevnego Egipta, Vavilona i Gretsii. [Awakening science. Mathematics of Ancient Egypt, Babylon and Greece]. M .: Science. Gos. ed. Phys.-Math. lit., 1959.
Vinokurov N.I. Vinodelie antichnogo Bospora. [Winemaking of the ancient Bosporus]. M., 1999.
Vodolazhskaya L.N. O vozmozhnosti primeneniya geometricheskoj approksimatsii dlya rekonstruktsii sosudov na primere keramiki Konstantinovskogo poseleniya. [On the possibility of applying geometric approximation for reconstruction of vessels using ceramics of the Konstantinovsky settlement as an example]. Istoriko-arkheologicheskie issledovaniya v g. Azove i na Nizhnem Donu. [Historical and archaeological research in the city of Azov and the Lower Don]. Azov, 2004. Issue 20.
Vygodsky M.Ya. Spravochnik po vysshej matematike. [Handbook of Higher Mathematics]. M .: Science. Ch. ed. phys.- mat. lit., 1976.
Zeest I.B. Keramicheskaya tara Bospora. [Ceramic containers of Bosporus]. Materialy i issledovaniya po arkheologii SSSR. [Materials and research on archeology of the USSR]. 83, 1960.