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Abstract 

 In this paper I develop a theoretical analysis of a two gear eccentric system in the Antikythera 

Mechanism, the oldest known analog computer. One gear carries a pin and as it rotates it transmits the 

motion to the other gear, which has an aperture. The angular velocity of the second gear depends from the 

shape of the aperture. Until now it was believed that the aperture was an orthogonal parallelogram. Prof. 

Xenophon Moussas expressed the idea that its shape could also be an ellipse or ellipse like. In this work the 

shapes Slot, Ellipse and Parabola are examined. The resulting motion of the gears is determined by a 

model in the framework of Lagrangian Mechanics. The theoretical results of the three shapes are compared 

with ephemeris data in order to specify which of them fits better with the data.  

Keywords: Antikythera mechanism, ancient astronomy, ancient physics, prehistoric science, ancient 

technologies. 

Introduction 

The Antikythera  Mechanism was discovered by Greek sponge divers in 1900 at the sea region 

of  Antikythera  island in Greece. Named after its place of discovery in a Roman shipwreck, it is 

technically more complex than any known device for at least a millennium afterwards [1]. It is 

the oldest computer and was produced probably in the second half of the 2
nd

 century B.C. 

(between 150 and 100). It could make mathematical calculations by using gears made of bronze 

and estimate the positions of Sun and Moon relative with the stars and represents them to cyclic 

scales which show the zodiac, that is to say the sky with the stars (Fig.1) [2]. It also gives the date 

and probably the hour too. It displays the lunar phases and also keeps various calendars like the 

tropical which is still used for the agrarian works and lunar-sun calendars that the Greeks were 

using for their festivals, like the Olympic or the Nemea Games and nowadays for Easter. It can 

also predict the Sun and Lunar eclipses. Its dimensions were about 32227 cm [2].  

It is notable that the Antikythera Mechanism gives lunar motion by using a mechanism which 

emulate Kepler’s 2
nd

 law. That is to say the Moon moves faster when it is at the perigee and 

slower at the apogee. The exact definition of Luna’s location in the sky is important because it 

can be used to calculate the geographical length [2]. 

http://aaatec.org/art/a_mg1
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In Figure 2a is represented a schematic sectional diagram of the gearing.  

                

 

Figure 1. Reconstruction of the Antikythera mechanism in the National Archaeological Museum, Athens
1. 

 

 

a 

 

                                                 
1
 https://archeocomputing.files.wordpress.com/2011/03/antikythera-mechanism2.jpg 
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b 

Figure 2. Antikythera mechanism: a - schematic sectional diagram of the gearing [3, Fig. 6], [4]; 

b - detailed view of Pin and Slot Hipparchos’ lunar mechanism (gears k1, k2, e5, e6). 

Figure 2b shows the gears that emulate Luna’s motion. They are e5, e6, k1 and k2. As e5 

rotates, it forces k1 which transmits the motion to k2 via a pin. Then k2 forces e6 to rotate. The 

gear k2 has an aperture and it’s center is lightly offset from k1’s center. The last two gears 

reproduce the differential lunar motion as seen from Earth. The result is displayed via e1 and b3 

gears. Figure 3 shows the diagram of the lunar anomaly mechanism. 

 

 

Figure 3. Diagram of the Lunar anomaly mechanism [3, Fig. 8], [5]. 
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Prof. X. Moussas expressed the idea that the shape of the aperture might not be a parallelogram 

(slot- as drawn in Figure 3) but could also be an ellipse or ellipse like –maybe parabola, as shown 

in Figure 4. 

   
a                                                  b 

Figure 4.  Lunar anomaly mechanism: a -  CT slide,  b - detailed view of ellipse by X. Moussas. 

[both pictures offered by X. Moussas
2
] 

In the following theoretical analysis of the two-gear system k1 and k2, three different aperture 

shapes Slot, Ellipse and Parabola are examined in order to find out which of the three fits better 

to the ephemeris data. 

Slot – Geometrical analysis 

Let us consider two circles with the same radius ro (Fig. 5)
3
. Let d be the distance between their 

centers O and Ο΄ which is constant. So the length of the slot is 2d. The black circle represents the 

gear that carries the pin K, which moves in a circular path around O. Because the pin has 

dimensions we will from now on consider that point K is the center of the pin. (So ro is the 

distance between the center of gear k1 and the center of the pin K.) Its angular velocity ωο is 

constant. The vector oOK r  has also constant length ro. The blue circle represents the gear that 

carries the slot. The center of the slot C, circuits around O΄. It is obvious that the distance Ο΄C is 

also ro. We have 'OO d  so the radius 'r O K  is or r d  . 

 

Figure 5. A schematic illustration of the gears with the relative offset of their centers. 

                                                 
2
 ©2013 Univercity of Athens 

3
 Figures 5 – 22 are the author’s copyright 
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So the length of r  is   2 2 2 coso or r d r d      and it depends from angle θo. We can estimate 

the angular velocity of  K as seen from Ο΄. We have:  

 

ˆˆ ,

ˆˆ ˆ ,

o o o or r r r r t

r rr r rr r
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The blue gear carries the slot, which is parallel to O΄C. So the gear rotates with ω, too. If we 

expand in Taylor series, we get:  

 

 2cos cos2 .... 1o o o o oz t z t         

 

A body that is being moved by a central force, generally follows a conic section. We are 

interested for an elliptical one. Let the focus (c, 0) be the tractive point and ro the length of the 

semi-major axis. (Figure 6). In this case the body has a constant angular momentum 2p mr  . 

The angular velocity is then 2/p mr  . 

 

Figure 6. Motion in elliptical orbit. 

We have 
21

1 cos
o

e
r r

e 





  and  

2
2

2 2 2 2

0 0

1 1 2cos 2 cos
.....

o o oe e

e e
r r r r

 

 

   
      

   
 

where e is the orbits eccentricity. 

 

 For  e = 0, we take 
2

p

mr






     and t  , so we can write: 

     2 2, 2 cos 2 cos ... 2ot e t e t              

 

The eccentricity of Moon’s orbit is 0.0549 [6]. From Mechanism’s measurements [7] we have: 
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 
 

1.1
0.114583 2 0.0572917

9.6

mmd
z

r mm

     

 

 That is to say that the relative offset of the two centers is estimated to be almost double than the 

eccentricity of Moon’s orbit. Equations (1) and (2) coincide up to 1
st
 order expansion. 

Theoretical analysis of the two-gear system 

Figure 7 represents an elliptical aperture and its positions as the gears rotate. The center of the 

Pin K moves along the half periphery of this ellipse, around C. Clockwise for 0<θ<π and 

counterclockwise for  π<θ<2π. Mind that it’s  9.6or mm  and  1.1d mm  [7]. 

 

Figure 7. The positions of an elliptical aperture as the gears rotate. 

We are referring to the Oxy Cartesian Coordinate System (CCS). We consider 

'
0

d
KA OO d

 
    

 
 =  constant vector.  It is then ' '

d d
O A OK O A OK

dt dt
   . So 'O A  

forms an angle θο with the Ox semi axis and it moves with an ωο angular velocity, as OK . The 

angle between 'O C  and Ox semi axis, which we are interested for, is     . It is obvious 

that 0   at the upper semicircle and 0   at the lower one. We also consider the rotating 

'O xy  CCS. As can be seen in Figure 7 the pin always moves on the half-plane with positive y . 

Since 'O C  is fixed on the blue gear, its angular velocity      is the one we are looking 

for. Note that for 0   it must be 0   and for    it is 0  . So we need to describe the 

motion as seen from the rotating 'O xy  CCS. 

The Lagrangian of the rotating pin K at the Oxy CCS (we denote as m it’s mass) is: 

 

   2 2 2 2 21 1

2 2
L m x y m x y     
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We are going to rewrite the Lagrangian to a more “compact” form. We set 1 2,q x q y  . We 

denote as 
ijn  the elements of the Euclidean metric, were , 1,2i j  . We can use the dimensionless 

variables: / , /k k

o oq q r d d r  , so becomes 1.r   

We have then: 
21 1

2 2

i j i j

ij ijL mn q q m n q q   

We are going to rewrite the Lagrangian in terms of ,x y  coordinates of the rotating system. The 

transformation is:  

 i i l i

l
q R q d    where   

cos sin

sin cos

i

l
R

 


 

 
  
 

. 

The new form of the Lagrangian is: 

 

   
22 2 2 21 1 1 1

2 2 2 2 2

k l k l k l k l i l

kl kl kl il
lk

L mn q q m n q q m R q q m n q q m d m R q d  


     

 
      

 
 

 

Where  
2

d d d  . The term  
22 / 2m d  may be omitted because it is constant and does not 

affect the equations of motion. We can also divide by the mass m, which is constant, too. We 

finally get: 

 2 2 21 1 1

2 2 2 2

k l k l k l k l i l

kl kl kl il
lk

L n q q n q q R q q n q q R q d 


    

 
     

 
 

The equations of motion are 
s s

d L L

dt q q

  
 

  
.  This leads us to: 

 2 2 22
2 2

r r
rr k k r r s

s
k k

q R q R q q q R d 

 
     

   
        

   
 

We set d = 0.114583, ωo = 2π [rad/sec], and ot     [rad]. The period becomes T = 1 [sec]. 

 

Figure 8. Coordinates of K  ,x y  in the rotating 'O xy  CCS. 
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The equations of motion are then: 

 

            

            

12.5664 2 12.5664 4.52357cos 2 0

12.5664 2 12.5664 4.52357sin 2 0

x t y t y t x t t

y t x t x t y t t

     

     

       

       
 

 

For a given shape of the aperture with known parametric equations    ,x t y t  (Figure 8), we 

finally take two differential equations of the unknown function δθ(t). We then solve the second 

equation for   and replace it at the first one, and we take a second order equation of  . 

 

                
                

       

2 2 2 2 212.5664 2 2

4.52357 cos 2 sin 2 12.5664

0

x t y t x t y t x t y t x t y t

x t t y t t x t y t x t y t

x t x t y t y t

 

   

            

       

  

 

 

 The algebraic solutions are two non-linear differential equations of first order 

 1,2 1,2 , , , , , , ,f x x x y y y t  . One of them is going to be solved numerically. 

 

For Ellipse the parametric equations verify the  

 
2

2 2

2
1

1

y
x d


  


. 

where ε is the aperture’s eccentricity. 

It is also 2 2 2 21 2 cosx y r d d t      .   

 

From these two equations the accepted solution for  x t  is:  

 
 2

2 4 2

2 2

1 1
1 2 cosx t d d t


  

 


       

The solutions for  y t  are    2 21 2 cosy t d d t x t      , 

but since we want 0y   the corresponding equation is:   

   2 21 2 cosy t d d t x t      

 

As an estimate, based on Figure 4, the eccentricity of the elliptical aperture is about 0.98. We set 

semi-major axis d = 0.114583, ε = 0.98, ωο = 2π [rad/sec] and we get the following graphs of 

Figure 9: 
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Figure 9. The parametric equations    ,x t y t  and the time derivative  y t . 

Equation  x t  varies between  0 0.885417x   (or 8.5 mm) and  0.5 1.11458x   (or 10.7 mm). 

Equation  y t  varies between  0 0y   and  0.5 0.0228018y   (or ~0.22 mm). The time 

derivative  y t  shows a gap at t = kT/2.  This occurs when ,k k   . From the parametric 

equations for initial conditions  0.00001, 0.00001o ot t  , we get  1 13.551ot   and 

 2 0.641597ot .  

 

Figure 10. The modulation of the gear’s angular velocity for the cases 0y   and 0y  . 

At 0    t  is positive, so we are going to solve the second differential equation the 

 2 2 2, , , , , , ,f x x x y y y t  . We find a numerical solution for  t  and we plot the  t  at 

Figure 10. In the same Figure has been also plotted the case for which it would always be 0y  . 

The graph also shows a gap at θ = kπ, so Ellipse may not be a suitable shape for the aperture 

because it produces an intermitted movement of the gear.  
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Since we wanted to restrain the movement at the positive half axis, the Lagrangian should had 

been written as:  

 

   2 2 2 21 1 1

2 2 2 2

lk l k l k l k l k s

kl kl kl kl s
lk

L n q q n q q R q q n q q n q R d c q 


    

 
         

 
 

 

There also should be a potential  c y    where c is a suitable positive constant. The 

corresponding equation of motion should then be: 

 

       4.52357sin 2 12.5664 12.5664 2y t y x x c y               

 

There exists a force  c y  that causes the reflection at point 0y  . We tacitly assumed the 

existence of a potential  c y    when we selected the positive solution for y . The solution of 

the differential equation  2 2 2, , , , , , ,f x x x y y y t   also shows a discontinuity.  

 

Slot is a limit case of Ellipse with ε = 1 and parametric equations: 

 

 

 

21 2 cos

0

x t d d t

y t


    




 

 

For initial conditions  0, 0 0t   , it is  1 0 13.3774   and  2 0 0.811045 . So we 

will solve again the  2 2 2, , , , , , ,f x x x y y y t  . The solution is drawn in Figure 11 (blue) 

along with the Ellipse's curves. In case of Slot,   0y t   is a continuous function. So the solution 

of  t  is continuous as well. 

 

Figure 11. The modulation of the gear’s angular velocity for Ellipse ( 0y  , 0y  ) 

and for Slot ( 0y  ). 

 

Let us examine now Parabola. We consider the same length of axes as in Ellipse. The 

parametric equations are:  
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 

 2 2

1 cos

1 sin

x d t

y d t



 

  

  
 

 

where  t is a nonlinear function of time.  They lead us to the relation    

 

   
 

2 2

2

2 22

1 1
1 1 1 3

1

x xy
y d

d dd




  
       

    

 

 

We have: 

 

 
   

 
 

2 2 2

2
2

2 2 2 2 22

22 2 2

2

1 2 cos

1
1 1 1 2 cos 41

1 1

x y d d t

x
x d d d tx

dy d
d







 


    
  
          

       
    

 

The above equation (4) has four solutions. We call the one of interest  *x t . It shows a time delay 

of T/2 from the expected one. So our final result is    * 0.5x t x t   and is drawn below. This 

also varies between 0.885417  (or 8.5 mm) and 1.11458 (or 10.7 mm) and the corresponding  y t  

oscillates between 0 and 0.0228018 (or 0.22 mm) as we expected. 

 

Figure 12. Parabola’s parametric equation  x t . 

The graph of the equation (3) is printed in Figure13. 

 

Figure 13. Parabola’s parametric equation  y t . 
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Again, we have to solve the equation  2 2 2, , , , , , ,f x x x y y y t  . Finally, we get a numerical 

solution for the angular velocity  t  which is shown below (Figure 14): 

 

Figure 14. The modulation of the gear’s angular velocity for Parabola. 

Figure 15 shows a closed trajectory in the phase space. This means that we have a periodic curve, 

as we expected. 

 

Figure 15. Closed trajectory in the phase space for Parabola. 

The time derivative  y t  is continuous (Figure 16). 

 

Figure 16. Time derivative  y t  for  Parabola. 

This is also confirmed by calculating the limits at points t = 0 and t = 0.5:  

 

     17 17 17

0 0
0 3.9633 10 , lim 0 3.9633 10 , lim 0 3.9633 10

t t
y y y

 

  

 
            

     17 17 17

0.5 0.5
0.5 6.29641 10 , lim 0.5 6.29641 10 , lim 0.5 6.29641 10

t t
y y y

 

  

 
         . 
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Since the trajectory in phase space is closed,  y t  is continuous for every ,k k   . The 

step function  c y   is not needed to be present in Lagrangian’s formula any more and this 

yields a continuous solution. The two shapes of the aperture are printed below (Figure 17):  

 

Figure 17. The shapes of an elliptical and a paraboloid aperture. 

Note that the difference in the final results is due to the form of the shape, as can be seen in 

Figure 18 which shows the three cases synoptically.  

 

Figure 18.  The modulation of the gear’s angular velocity for Slot (green),  for Ellipse ( 0y  , violet) 

and for Parabola (blue). 

 

Convert units to deg/day 

 

The anomalistic period of the Moon is 27.55455anT  [days]
4
 and the corresponding frequency 

is  
360

13.065 /
o

an

an

deg d
T

    or   
2

0.228027 /an

an

rad d
T


  . 

We said before that    o ot t      where we had set 2o   [rad/sec]. The expression of 

 ot   includes terms of cos ot  where the argument is expressed in rad. We have to replace 

the angular velocity 2o   [rad/sec] by the anomalistic velocity  13.065 /deg d  and the 

period T=1 [sec] in  ot  by Tan. So we have: 

     
deg 13.065

2 2 / sec 13.065 2
27.55455

2
sec

t
t t rad

radday
      



   
       

    
 
 

 

The curves below can now be compared with the data: 

                                                 
4
 http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros.html 
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Figure 19. The modulation of the gear’s angular velocity for Slot (green),  for Ellipse ( 0y  , 

violet) for Parabola (blue) and the anomalistic frequency (red). 

 

 

Comparison with astronomical ephemeris data 
 

The data cover the period from 1/1/2009 to 31/12/2013. The calculations were performed using 

an astronomical computer program HORIZONS System
5
. For each day we have the right 

ascension RA [h, m, s] and the declination δ [deg, m, s]. In order to compute the angular velocity 

we need to consider the celestial sphere (Fig. 20). 

We also consider a spherical coordinate system where 
 
 

15
1

RA h

h
   [deg]  and  90o    

[deg]     or    
 
 

 
15

1 180

o

o

RA h rad

h


    [rad]     and    

2 180

o

o

 
     [rad]. 

 

Τhe position vectors of  the moon in Figure 20, are: 

 

 

1 1 1 1 1 1

2 2 2 2 2 2

sin cos sin sin cos

sin cos sin sin cos

r R

r R

    

    




 

where R is the radius of the celestial sphere. 

 

Let  u  be the angle between these two vectors. It is then: 

 

  

2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

cos cos cos cos sin sin

arccos cos cos cos sin sin

r r R u R

u

     

     

       

  
 

 

From the sourced data we can now calculate the angular velocity in deg/day or in rad/day.  

We then compute the moving average of five terms: 
2

2

1

5

i

i j

j i

u u


 

  . 

The results are represented in dots along with Parabola’s curve (blue) and Slot’s curve (green) 

(Fig. 21). The computed mean values of minima and maxima of the ephemeris data are          

min 11.8883   [deg/d] and max 14.689   [deg/d]. They are shown in orange in Figures 21. 

 

                                                 
5
 http://ssd.jpl.nasa.gov/horizons.cgi#results 
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Figure 20. A schematic illustration of moon’s trajectory in the Celestial Sphere. 

a b 

 

c d 
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e 

 

Figure 21. Comparison of the theoretical curves of Slot (green) and Parabola (blue) with the 

ephemeris data (dots), the anomalistic frequency (red) and the mean values of minima and 

maxima (orange). a - year 2009, b - year 2010, c - year 2011, d - year 2012, e - year 2013.  

 

Now we are going to calculate the distribution of the deviation of the theoretical curves of Slot 

and Parabola from the computed moving averages:  

   
100, 100

i Slot i i Par i

Slot Par

i i

u t u t
dev dev

u u

  
   

The statistics are: 

Slot: Mean = 0.970374, Median = 1.3069 , Standard Deviation = 2.0113, Skewness = -0.664744 

Parabola:  Mean = 0.973558, Median = 1.13315, Standard Deviation = 2.54583,  

Skewness = -0.428225 

Parabola’s distribution shows a slightly larger standard deviation. The Histograms are given in 

below Figures 22a, b. In the above analysis of Parabola we assumed that the ratio of the minor 

semi axis (a) to the major semi axis (b) is 21 0.199  which corresponds to 0.98  . If        

a = 1.1mm then b = 0.22mm. The question is which was the lower level of that age’s micro-

technology. 

 

a b 

Figure 22. Histogram of the percent deviation of the theoretical curve from data: 

a - for Slot, b - for Parabola. 

If we take into account that the pin has an unknown diameter then the major semi axis remains 

the same, since it is the distance between the center of gear k1 and the center of the pin K (as 

discussed earlier). But then the minor semi axis must be smaller. This means that the 

corresponding ε must be larger than 0.98. Furthermore, according to the geometrical analysis, 

since the eccentricity of moon’s orbit is ~0.0549 [6], it should be d = 20.0549 = 0.1098. 

 



Archaeoastronomy and Ancient Technologies 2016, 4(1), 1-18             

 

17 

For example, if we have 0.99   and d = 0.1098, the statistics are:  

Slot: Mean = 0.9442, Median = 1.0994, Standard Deviation = 1.8914, Skewness = -0.4178 

Parabola:  Mean = 0.9463, Median = 1.1076, Standard Deviation = 2.16, Skewness = -0.3664 

The curves now seem to fit better with the data. The Mean and the Standard Deviation are smaller 

than the previous case. Slot still has a smaller standard deviation than Parabola. 

 

The mean distances at perigee and apogee are 363300 [Km] and 405500 [Km] and the mean 

maximum and minimum orbital velocities are 1.076 [Km/sec] and 0.964 [Km/sec]
6
 respectively. 

We can compute the mean angular velocities at these points. They are  min 11.7685 /deg day   
and  max 14.6617 /deg day  . Remind that the computed minima and maxima of the data were 

min 11.8883 /o day   and max 14.689 /o day  .  

 

In the first case (where we had set ε = 0.98 and d = 0.114583) the minima and maxima of Slot 

and Parabola were 

max,1 14.7558 / ,slot o day   min,1 11.7219 /slot o day  ,  max,1 14.8627 / ,par o day   min,1 11.6229 /par o day   

 

In the second case (ε = 0.99 and d = 0.1098) the minima and maxima of Slot and Parabola were 

 max,2 14.6765 / ,slot o day   min,2 11.7724 / ,slot o day   max,2 14.7307 / ,par o day   min,2 11.7207 /par o day   

 

The ratios min/max are:  

min

max

0.803



 , min

max

0.809



 , 

min,1

max,1

0.794

slot

slot




 , 

min,1

max,1

0.782

par

par




 , 

min,2

max,2

0.802

slot

slot




 , 

min,2

max,2

0.796

par

par




  

In both cases Slot’s value is closer to 0.803. 

In the geometrical analysis for an elliptical orbit we had found: 
21

1 cos
o

e
r r

e 





. If minr , max  

are the distance and angular velocity at the perigee (where θ = 0) and maxr , min  are the distance 

and angular velocity at the apogee (θ = π), due to angular momentum’s conservation law it is 
2 2 2 2

min max max min min max min max/ /r r r r       

 

So:  

2 2

2 3min min

max max

1 1
1 4 8 12 ....

1 1

r re e
e e e

r e r e

   
          

   
   (5) 

 

For e = 0.0549 it is 

2

min

max

0.803
r

r

 
 
 

.  

 

The equation of Slot was 
 

2

1 cos

1 2 cos

o z

z z





 







 
. So at points θo = 0 and θo = π, it is min

max

1

1

z

z









. 

For 2z e , 2 31 2
1 4 8 16 ....

1 2

e
e e e

e


    


   (6) 

 

For e = 0.0549, it is min max/ 0.802  .  

Equations (5) and (6) coinside up to 2
nd

 order expansion. Slot’s results are more accurate. 

                                                 
6
 http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html 
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Conclusions 
 

The above theoretical analysis illustrates the dynamics of the pin-aperture system. It is 

important to have an accurate measure of the eccentricity of Luna’s orbit. The shape of the 

aperture introduces a potential which forces the gear to a differential rotation that simulates Lunar 

motion. The differences between the shapes are important especially at the minima and maxima 

The advantage of Slot is that it gives more accurate results and is easy to be manufactured. Other 

shapes with known parametric equations could also be examined in order to compare the 

produced motion with astronomical ephemeris data.  
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